Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Efficient quantum measurement of Pauli operators in the presence of finite sampling error (1908.06942v3)

Published 19 Aug 2019 in quant-ph

Abstract: Estimating the expectation value of an operator corresponding to an observable is a fundamental task in quantum computation. It is often impossible to obtain such estimates directly, as the computer is restricted to measuring in a fixed computational basis. One common solution splits the operator into a weighted sum of Pauli operators and measures each separately, at the cost of many measurements. An improved version collects mutually commuting Pauli operators together before measuring all operators within a collection simultaneously. The effectiveness of doing this depends on two factors. Firstly, we must understand the improvement offered by a given arrangement of Paulis in collections. In our work, we propose two natural metrics for quantifying this, operating under the assumption that measurements are distributed optimally among collections so as to minimise the overall finite sampling error. Motivated by the mathematical form of these metrics, we introduce SORTED INSERTION, a collecting strategy that exploits the weighting of each Pauli operator in the overall sum. Secondly, to measure all Pauli operators within a collection simultaneously, a circuit is required to rotate them to the computational basis. In our work, we present two efficient circuit constructions that suitably rotate any collection of $k$ independent commuting $n$-qubit Pauli operators using at most $kn-k(k+1)/2$ and $O(kn/\log k)$ two-qubit gates respectively. Our methods are numerically illustrated in the context of the Variational Quantum Eigensolver, where the operators in question are molecular Hamiltonians. As measured by our metrics, SORTED INSERTION outperforms four conventional greedy colouring algorithms that seek the minimum number of collections.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube