Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of Gradient Methods on Bilinear Zero-Sum Games (1908.05699v4)

Published 15 Aug 2019 in cs.LG, cs.GT, math.OC, and stat.ML

Abstract: Min-max formulations have attracted great attention in the ML community due to the rise of deep generative models and adversarial methods, while understanding the dynamics of gradient algorithms for solving such formulations has remained a grand challenge. As a first step, we restrict to bilinear zero-sum games and give a systematic analysis of popular gradient updates, for both simultaneous and alternating versions. We provide exact conditions for their convergence and find the optimal parameter setup and convergence rates. In particular, our results offer formal evidence that alternating updates converge "better" than simultaneous ones.

Citations (37)

Summary

We haven't generated a summary for this paper yet.