Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

The Brauer indecomposability of Scott modules with semidihedral vertex (1908.05536v3)

Published 15 Aug 2019 in math.RT and math.GR

Abstract: We present a sufficient condition for the $kG$-Scott module with vertex $P$ to remain indecomposable under the Brauer construction for any subgroup $Q$ of $P$ as $k[Q\,C_G(Q)]$-module, where $k$ is a field of characteristic $2$, and $P$ is a semidihedral $2$-subgroup of a finite group $G$. This generalizes results for the cases where $P$ is abelian or dihedral. The Brauer indecomposability is defined \linebreak by R.~Kessar, N.~Kunugi and N.~Mitsuhashi. The motivation of \linebreak this paper is a fact that the Brauer indecomposability of a $p$-permutation bimodule ($p$ is a prime) is one of the key steps in order to obtain a splendid stable equivalence of Morita type by making use of the gluing method due to Brou\'e, Rickard, Linckelmann and Rouquier, that then can possibly be lifted to a splendid derived (splendid Morita) equivalence.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube