A curious behavior of three-dimensional lattice Dirac operators coupled to monopole background (1908.05284v1)
Abstract: We investigate numerically the effect of regulating fermions in the presence of singular background fields in three dimensions. For this, we couple free lattice fermions to a background compact U(1) gauge field consisting of a monopole-anti-monopole pair of magnetic charge $\pm Q$ separated by a distance $s$ in a periodic $L3$ lattice, and study the low-lying eigenvalues of different lattice Dirac operators under a continuum limit defined by taking $L\to\infty$ at fixed $s/L$. As the background gauge field is parity even, we look for a two-fold degeneracy of the Dirac spectrum that is expected of a continuum-like Dirac operator. The naive-Dirac operator exhibits such a parity-doubling, but breaks the degeneracy of the fermion-doubler modes for the $Q$ lowest eigenvalues in the continuum limit. The Wilson-Dirac operator lifts the fermion-doublers but breaks the parity-doubling in the $Q$ lowest modes even in the continuum limit. The overlap-Dirac operator shows parity-doubling of all the modes even at finite $L$ that is devoid of fermion-doubling, and singles out as a properly regulated continuum Dirac operator in the presence of singular gauge field configurations albeit with a peculiar algorithmic issue.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.