Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-supervised Learning with Adaptive Neighborhood Graph Propagation Network (1908.05153v2)

Published 14 Aug 2019 in cs.CV

Abstract: Graph Convolutional Networks (GCNs) have been widely studied for compact data representation and semi-supervised learning tasks. However, existing GCNs usually use a fixed neighborhood graph which is not guaranteed to be optimal for semi-supervised learning tasks. In this paper, we first re-interpret graph convolution operation in GCNs as a composition of feature propagation and (non-linear) transformation. Based on this observation, we then propose a unified adaptive neighborhood feature propagation model and derive a novel Adaptive Neighborhood Graph Propagation Network (ANGPN) for data representation and semi-supervised learning. The aim of ANGPN is to conduct both graph construction and graph convolution simultaneously and cooperatively in a unified formulation and thus can learn an optimal neighborhood graph that best serves graph convolution for data representation and semi-supervised learning. One main benefit of ANGPN is that the learned (convolutional) representation can provide useful weakly supervised information for constructing a better neighborhood graph which meanwhile facilitates data representation and learning. Experimental results on four benchmark datasets demonstrate the effectiveness and benefit of the proposed ANGPN.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Bo Jiang (235 papers)
  2. Leiling Wang (2 papers)
  3. Jin Tang (139 papers)
  4. Bin Luo (209 papers)

Summary

We haven't generated a summary for this paper yet.