Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 109 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Lorentzian CFT 3-point functions in momentum space (1908.04733v2)

Published 13 Aug 2019 in hep-th

Abstract: In a conformal field theory, two and three-point functions of scalar operators and conserved currents are completely determined, up to constants, by conformal invariance. The expressions for these correlators in Euclidean signature are long known in position space, and were fully worked out in recent years in momentum space. In Lorentzian signature, the position-space correlators simply follow from the Euclidean ones by means of the i-epsilon prescription. In this paper, we compute the Lorentzian correlators in momentum space and in arbitrary dimensions for three scalar operators by means of a formal Wick rotation. We explain how tensorial three-point correlators can be obtained and, in particular, compute the correlator with two identical scalars and one energy-momentum tensor. As an application, we show that expectation values of the ANEC operator simplify in this approach.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube