Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Absorbing boundary conditions for the time-dependent Schrödinger-type equations in $\mathbb R^3$ (1908.02456v2)

Published 7 Aug 2019 in math.NA, cs.NA, and physics.comp-ph

Abstract: Absorbing boundary conditions are presented for three-dimensional time-dependent Schr\"odinger-type of equations as a means to reduce the cost of the quantum-mechanical calculations. The boundary condition is first derived from a semi-discrete approximation of the Schr\"odinger equation with the advantage that the resulting formulas are automatically compatible with the finite-difference scheme and no further discretization is needed in space. The absorbing boundary condition is expressed as a discrete Dirichlet-to-Neumann (DtN) map, which can be further approximated in time by using rational approximations of the Laplace transform to enable a more efficient implementation. This approach can be applied to domains with arbitrary geometry. The stability of the zeroth order and first order absorbing boundary conditions is proved. We tested the boundary conditions on benchmark problems. The effectiveness is further verified by a time-dependent Hartree-Fock model with Skyrme interactions. The accuracy in terms of energy and nucleon density is examined as well.

Citations (4)

Summary

We haven't generated a summary for this paper yet.