Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attention Control with Metric Learning Alignment for Image Set-based Recognition (1908.01872v1)

Published 5 Aug 2019 in cs.CV, cs.LG, and eess.IV

Abstract: This paper considers the problem of image set-based face verification and identification. Unlike traditional single sample (an image or a video) setting, this situation assumes the availability of a set of heterogeneous collection of orderless images and videos. The samples can be taken at different check points, different identity documents $etc$. The importance of each image is usually considered either equal or based on a quality assessment of that image independent of other images and/or videos in that image set. How to model the relationship of orderless images within a set remains a challenge. We address this problem by formulating it as a Markov Decision Process (MDP) in a latent space. Specifically, we first propose a dependency-aware attention control (DAC) network, which uses actor-critic reinforcement learning for attention decision of each image to exploit the correlations among the unordered images. An off-policy experience replay is introduced to speed up the learning process. Moreover, the DAC is combined with a temporal model for videos using divide and conquer strategies. We also introduce a pose-guided representation (PGR) scheme that can further boost the performance at extreme poses. We propose a parameter-free PGR without the need for training as well as a novel metric learning-based PGR for pose alignment without the need for pose detection in testing stage. Extensive evaluations on IJB-A/B/C, YTF, Celebrity-1000 datasets demonstrate that our method outperforms many state-of-art approaches on the set-based as well as video-based face recognition databases.

Citations (10)

Summary

We haven't generated a summary for this paper yet.