Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learned Clause Minimization in Parallel SAT Solvers (1908.01624v1)

Published 5 Aug 2019 in cs.DS and cs.LO

Abstract: Learned clauses minimization (LCM) let to performance improvements of modern SAT solvers especially in solving hard SAT instances. Despite the success of LCM approaches in sequential solvers, they are not widely incorporated in parallel SAT solvers. In this paper we explore the potential of LCM for parallel SAT solvers by defining multiple LCM approaches based on clause vivification, comparing their runtime in different SAT solvers and discussing reasons for performance gains and losses. Results show that LCM only boosts performance of parallel SAT solvers on a fraction of SAT instances. More commonly applying LCM decreases performance. Only certain LCM approaches are able to improve the overall performance of parallel SAT solvers.

Summary

We haven't generated a summary for this paper yet.