Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effectiveness of pre- and inprocessing for CDCL-based SAT solving (1310.4756v1)

Published 17 Oct 2013 in cs.LO and cs.AI

Abstract: Applying pre- and inprocessing techniques to simplify CNF formulas both before and during search can considerably improve the performance of modern SAT solvers. These algorithms mostly aim at reducing the number of clauses, literals, and variables in the formula. However, to be worthwhile, it is necessary that their additional runtime does not exceed the runtime saved during the subsequent SAT solver execution. In this paper we investigate the efficiency and the practicability of selected simplification algorithms for CDCL-based SAT solving. We first analyze them by means of their expected impact on the CNF formula and SAT solving at all. While testing them on real-world and combinatorial SAT instances, we show which techniques and combinations of them yield a desirable speedup and which ones should be avoided.

Citations (7)

Summary

We haven't generated a summary for this paper yet.