Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 13 tok/s
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 198 tok/s Pro
2000 character limit reached

Edge states in ordinary differential equations for dislocations (1908.01377v1)

Published 4 Aug 2019 in math-ph, math.CA, and math.MP

Abstract: In this article, we study Schr\"odinger operators on the real line, when the external potential represents a dislocation in a periodic medium. We study how the spectrum varies with the dislocation parameter. We introduce several integer-valued indices, including Chern number for bulk indices, and various spectral flows for edge indices. We prove that all these indices coincide, providing a proof a bulk-edge correspondence in this case. The study is also made for dislocations in Dirac models on the real line. We prove that 0 is always an eigenvalue of such operators.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)