Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Nonoverlapping Block Jacobi Method for the Dual Rudin--Osher--Fatemi Model (1908.01327v1)

Published 4 Aug 2019 in math.NA and cs.NA

Abstract: We consider nonoverlapping domain decomposition methods for the Rudin--Osher--Fatemi~(ROF) model, which is one of the standard models in mathematical image processing. The image domain is partitioned into rectangular subdomains and local problems in subdomains are solved in parallel. Local problems can adopt existing state-of-the-art solvers for the ROF model. We show that the nonoverlapping relaxed block Jacobi method for a dual formulation of the ROF model has the $O(1/n)$ convergence rate of the energy functional, where $n$ is the number of iterations. Moreover, by exploiting the forward-backward splitting structure of the method, we propose an accelerated version whose convergence rate is $O(1/n2)$. The proposed method converges faster than existing domain decomposition methods both theoretically and practically, while the main computational cost of each iteration remains the same. We also provide the dependence of the convergence rates of the block Jacobi methods on the image size and the number of subdomains. Numerical results for comparisons with existing methods are presented.

Citations (12)

Summary

We haven't generated a summary for this paper yet.