Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain Decomposition Methods for Elliptic Problems with High Contrast Coefficients Revisited (2212.12216v1)

Published 23 Dec 2022 in math.NA and cs.NA

Abstract: In this paper, we revisit the nonoverlapping domain decomposition methods for solving elliptic problems with high contrast coefficients. Some interesting results are discovered. We find that the Dirichlet-Neumann algorithm and Robin-Robin algorithms may make full use of the ratio of coefficients. Actually, in the case of two subdomains, we show that their convergence rates are $O(\epsilon)$, if $\nu_1\ll\nu_2$, where $\epsilon = \nu_1/\nu_2$ and $\nu_1,\nu_2$ are coefficients of two subdomains. Moreover, in the case of many subdomains, the condition number bounds of Dirichlet-Neumann algorithm and Robin-Robin algorithm are $1+\epsilon(1+\log(H/h))2$ and $C+\epsilon(1+\log(H/h))2$, respectively, where $\epsilon$ may be a very small number in the high contrast coefficients case. Besides, the convergence behaviours of the Neumann-Neumann algorithm and Dirichlet-Dirichlet algorithm may be independent of coefficients while they could not benefit from the discontinuous coefficients. Numerical experiments are preformed to confirm our theoretical findings.

Citations (2)

Summary

We haven't generated a summary for this paper yet.