Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Deep Reinforcement Learning in Minecraft with Action Advice (1908.01007v1)

Published 2 Aug 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Training deep reinforcement learning agents complex behaviors in 3D virtual environments requires significant computational resources. This is especially true in environments with high degrees of aliasing, where many states share nearly identical visual features. Minecraft is an exemplar of such an environment. We hypothesize that interactive machine learning IML, wherein human teachers play a direct role in training through demonstrations, critique, or action advice, may alleviate agent susceptibility to aliasing. However, interactive machine learning is only practical when the number of human interactions is limited, requiring a balance between human teacher effort and agent performance. We conduct experiments with two reinforcement learning algorithms which enable human teachers to give action advice, Feedback Arbitration and Newtonian Action Advice, under visual aliasing conditions. To assess potential cognitive load per advice type, we vary the accuracy and frequency of various human action advice techniques. Training efficiency, robustness against infrequent and inaccurate advisor input, and sensitivity to aliasing are examined.

Citations (27)

Summary

We haven't generated a summary for this paper yet.