Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical upscaling of perturbed diffusion problems (1908.00652v1)

Published 1 Aug 2019 in math.NA and cs.NA

Abstract: In this paper we study elliptic partial differential equations with rapidly varying diffusion coefficient that can be represented as a perturbation of a reference coefficient. We develop a numerical method for efficiently solving multiple perturbed problems by reusing local computations performed with the reference coefficient. The proposed method is based on the Petrov--Galerkin Localized Orthogonal Decomposition (PG-LOD) which allows for straightforward parallelization with low communcation overhead and memory consumption. We focus on two types of perturbations: local defects which we treat by recomputation of multiscale shape functions and global mappings of a reference coefficient for which we apply the domain mapping method. We analyze the proposed method for these problem classes and present several numerical examples.

Citations (11)

Summary

We haven't generated a summary for this paper yet.