Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-supervised Compatibility Learning Across Categories for Clothing Matching (1907.13304v1)

Published 31 Jul 2019 in cs.IR and cs.LG

Abstract: Learning the compatibility between fashion items across categories is a key task in fashion analysis, which can decode the secret of clothing matching. The main idea of this task is to map items into a latent style space where compatible items stay close. Previous works try to build such a transformation by minimizing the distances between annotated compatible items, which require massive item-level supervision. However, these annotated data are expensive to obtain and hard to cover the numerous items with various styles in real applications. In such cases, these supervised methods fail to achieve satisfactory performances. In this work, we propose a semi-supervised method to learn the compatibility across categories. We observe that the distributions of different categories have intrinsic similar structures. Accordingly, the better distributions align, the closer compatible items across these categories become. To achieve the alignment, we minimize the distances between distributions with unsupervised adversarial learning, and also the distances between some annotated compatible items which play the role of anchor points to help align. Experimental results on two real-world datasets demonstrate the effectiveness of our method.

Citations (7)

Summary

We haven't generated a summary for this paper yet.