Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bias of Homotopic Gradient Descent for the Hinge Loss (1907.11746v1)

Published 26 Jul 2019 in stat.ML and cs.LG

Abstract: Gradient descent is a simple and widely used optimization method for machine learning. For homogeneous linear classifiers applied to separable data, gradient descent has been shown to converge to the maximal margin (or equivalently, the minimal norm) solution for various smooth loss functions. The previous theory does not, however, apply to non-smooth functions such as the hinge loss which is widely used in practice. Here, we study the convergence of a homotopic variant of gradient descent applied to the hinge loss and provide explicit convergence rates to the max-margin solution for linearly separable data.

Citations (5)

Summary

We haven't generated a summary for this paper yet.