A perturbative approach to non-degeneracy of the Lane-Emden system (1907.11303v1)
Abstract: We consider ground state solutions of the critical Lane-Emden system [\begin{cases} -\Delta u = vp &\text{in } \mathbb{R}n,\ -\Delta v = uq &\text{in } \mathbb{R}n,\ u,v >0\ &\text{in } \mathbb{R}n, \end{cases}] where $n \ge 3$ and $p,q>0$ and $(p,q)$ belongs to the critical hyperbola $\frac{1}{p+1} + \frac{1}{q+1} = \frac{n-2}{n}.$ We prove that they are non-degenerate when either $(p,q)$ is close to $(1,{n+4\over n-4})$ (if $n\ge5$) or $(p,q)$ is close to $({n+2\over n-2},{n+2\over n-2})$ (if $n\ge3$).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.