Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On URANS Congruity with Time Averaging: Analytical laws suggest improved models (1907.10092v1)

Published 23 Jul 2019 in math.NA and cs.NA

Abstract: The standard $1-$equation model \ of turbulence was first derived by Prandtl and has evolved to be a common method for practical flow simulations. Five fundamental laws that any URANS model should satisfy are [ \begin{array} [c]{ccc} \textbf{1.} & \text{Time window:} & \begin{array} [c]{c} \tau\downarrow 0\text{ implies }v_{\text{{\small URANS}}}\rightarrow u_{\text{{\small NSE}}}\text{ &}\ \text{ }\tau\uparrow\text{implies }\nu_{T}\uparrow \end{array} \ \textbf{2.} & l(x)=0\ \text{at walls:} & l(x)\rightarrow 0\text{ as }x\rightarrow walls,\ \textbf{3.} & \text{ Bounded energy:} & \sup_{t}\int\frac{1} {2}|v(x,t)|{2}+k(x,t)dx<\infty\ \textbf{4.} & \begin{array} [c]{c} \text{Statistical }\ \text{equilibrium:} \end{array} & \lim\sup_{T\rightarrow\infty}\frac{1}{T}\int_{0}{T}\varepsilon _{\text{model}}(t)dt=\mathcal{O}\left( \frac{U{3}}{L}\right) \ \textbf{5.} & \begin{array} [c]{c} \text{Backscatter}\ \text{possible:} \end{array} & \text{(without negative viscosities)} \end{array} ] This report proves that a \textit{kinematic} specification of the model's turbulence lengthscale by [ l(x,t)=\sqrt{2}k{1/2}(x,t)\tau\text{ }, ] where $\tau$\ is the time filter window, results in a $1-$equation model satisfying Conditions 1,2,3,4 without model tweaks, adjustments or wall damping multipliers.

Citations (5)

Summary

We haven't generated a summary for this paper yet.