Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 72 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 200 tok/s Pro
2000 character limit reached

From probabilistic mechanics to quantum theory (1907.08513v3)

Published 19 Jul 2019 in quant-ph

Abstract: We show that quantum theory (QT) is a substructure of classical probabilistic physics. The central quantity of the classical theory is Hamilton's function, which determines canonical equations, a corresponding flow, and a Liouville equation for a probability density. We extend this theory in two respects: (1) The same structure is defined for arbitrary observables. Thus we have all of the above entities generated not only by Hamilton's function but by every observable. (2) We introduce for each observable a phase space function representing the classical action. This is a redundant quantity in a classical context but indispensable for the transition to QT. The basic equations of the resulting theory take a "quantum-like" form, which allows for a simple derivation of QT by means of a projection to configuration space reported previously [Quantum Stud.:Math. Found. (2018) 5:219-227]. We obtain the most important relations of QT, namely the form of operators, Schr\"odinger's equation, eigenvalue equations, commutation relations, expectation values, and Born's rule. Implications for the interpretation of QT are discussed, as well as an alternative projection method allowing for a derivation of spin.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)