Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferring Accurate Bus Trajectories from Noisy Estimated Arrival Time Records (1907.08483v1)

Published 19 Jul 2019 in cs.OH

Abstract: Urban commuting data has long been a vital source of understanding population mobility behaviour and has been widely adopted for various applications such as transport infrastructure planning and urban anomaly detection. While individual-specific transaction records (such as smart card (tap-in, tap-out) data or taxi trip records) hold a wealth of information, these are often private data available only to the service provider (e.g., taxicab operator). In this work, we explore the utility in harnessing publicly available, albeit noisy, transportation datasets, such as noisy "Estimated Time of Arrival" (ETA) records (commonly available to commuters through transit Apps or electronic signages). We first propose a framework to extract accurate individual bus trajectories from such ETA records, and present results from both a primary city (Singapore) and a secondary city (London) to validate the techniques. Finally, we quantify the upper bound on the spatiotemporal resolution, of the reconstructed trajectory outputs, achieved by our proposed technique.

Citations (6)

Summary

We haven't generated a summary for this paper yet.