Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatio-Temporal Mobility Patterns of On-demand Ride-hailing Service Users (2010.10249v1)

Published 20 Oct 2020 in cs.SI

Abstract: Understanding individual mobility behavior is critical for modeling urban transportation. It provides deeper insights on the generative mechanisms of human movements. Emerging data sources such as mobile phone call detail records, social media posts, GPS observations, and smart card transactions have been used before to reveal individual mobility behavior. In this paper, we report the spatio-temporal mobility behaviors using large-scale data collected from a ride-hailing service platform. Based on passenger-level travel information, we develop an algorithm to identify users' visited places and the category of those places. To characterize temporal movement patterns, we reveal the differences in trip generation characteristics between commuting and non-commuting trips and the distribution of gap time between consecutive trips. To understand spatial mobility patterns, we observe the distribution of the number of visited places and their rank, the spatial distribution of residences and workplaces, and the distributions of travel distance and travel time. Our analysis highlights the differences in mobility patterns of the users of ride-hailing services, compared to the findings of existing mobility studies based on other data sources. It shows the potential of developing high-resolution individual-level mobility models that can predict the demand of emerging mobility services with high fidelity and accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jiechao Zhang (2 papers)
  2. Samiul Hasan (18 papers)
  3. Xuedong Yan (1 paper)
  4. Xiaobing Liu (22 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.