Brownian bridge with random length and pinning point for modelling of financial information (1907.08047v3)
Abstract: In this paper, we introduce an extension of a Brownian bridge with a random length by including uncertainty also in the pinning level of the bridge. The main result of this work is that unlike for deterministic pinning point, the bridge process fails to be Markovian if the pining point distribution is absolutely continuous with respect to the Lebesgue measure. Further results include the derivation of formulae to calculate the conditional expectation of various functions of the random pinning time, the random pinning location, and the future value of the Brownian bridge, given an observation of the underlying process. For the specific case that the pining point has a two-point distribution, we state further properties of the Brownian bridge, e.g., the right continuity of its natural filtration and its semi-martingale decomposition. The newly introduced process can be used to model the flow of information about the behaviour of a gas storage contract holder; concerning whether to inject or withdraw gas at some random future time.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.