Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Output-weighted optimal sampling for Bayesian regression and rare event statistics using few samples (1907.07552v2)

Published 17 Jul 2019 in stat.ML, cs.LG, stat.AP, and stat.CO

Abstract: For many important problems the quantity of interest is an unknown function of the parameters, which is a random vector with known statistics. Since the dependence of the output on this random vector is unknown, the challenge is to identify its statistics, using the minimum number of function evaluations. This problem can been seen in the context of active learning or optimal experimental design. We employ Bayesian regression to represent the derived model uncertainty due to finite and small number of input-output pairs. In this context we evaluate existing methods for optimal sample selection, such as model error minimization and mutual information maximization. We show that for the case of known output variance, the commonly employed criteria in the literature do not take into account the output values of the existing input-output pairs, while for the case of unknown output variance this dependence can be very weak. We introduce a criterion that takes into account the values of the output for the existing samples and adaptively selects inputs from regions of the parameter space which have important contribution to the output. The new method allows for application to high-dimensional inputs, paving the way for optimal experimental design in high-dimensions.

Citations (44)

Summary

We haven't generated a summary for this paper yet.