Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-Lingual Transfer Learning for Question Answering (1907.06042v1)

Published 13 Jul 2019 in cs.CL

Abstract: Deep learning based question answering (QA) on English documents has achieved success because there is a large amount of English training examples. However, for most languages, training examples for high-quality QA models are not available. In this paper, we explore the problem of cross-lingual transfer learning for QA, where a source language task with plentiful annotations is utilized to improve the performance of a QA model on a target language task with limited available annotations. We examine two different approaches. A machine translation (MT) based approach translates the source language into the target language, or vice versa. Although the MT-based approach brings improvement, it assumes the availability of a sentence-level translation system. A GAN-based approach incorporates a language discriminator to learn language-universal feature representations, and consequentially transfer knowledge from the source language. The GAN-based approach rivals the performance of the MT-based approach with fewer linguistic resources. Applying both approaches simultaneously yield the best results. We use two English benchmark datasets, SQuAD and NewsQA, as source language data, and show significant improvements over a number of established baselines on a Chinese QA task. We achieve the new state-of-the-art on the Chinese QA dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Chia-Hsuan Lee (12 papers)
  2. Hung-yi Lee (325 papers)
Citations (23)