Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Dynamic Regret for Non-degenerate Functions (1608.03933v3)

Published 13 Aug 2016 in cs.LG

Abstract: Recently, there has been a growing research interest in the analysis of dynamic regret, which measures the performance of an online learner against a sequence of local minimizers. By exploiting the strong convexity, previous studies have shown that the dynamic regret can be upper bounded by the path-length of the comparator sequence. In this paper, we illustrate that the dynamic regret can be further improved by allowing the learner to query the gradient of the function multiple times, and meanwhile the strong convexity can be weakened to other non-degenerate conditions. Specifically, we introduce the squared path-length, which could be much smaller than the path-length, as a new regularity of the comparator sequence. When multiple gradients are accessible to the learner, we first demonstrate that the dynamic regret of strongly convex functions can be upper bounded by the minimum of the path-length and the squared path-length. We then extend our theoretical guarantee to functions that are semi-strongly convex or self-concordant. To the best of our knowledge, this is the first time that semi-strong convexity and self-concordance are utilized to tighten the dynamic regret.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Lijun Zhang (239 papers)
  2. Tianbao Yang (162 papers)
  3. Jinfeng Yi (61 papers)
  4. Rong Jin (164 papers)
  5. Zhi-Hua Zhou (126 papers)
Citations (123)

Summary

We haven't generated a summary for this paper yet.