Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Split Q Learning: Reinforcement Learning with Two-Stream Rewards (1906.12350v2)

Published 21 Jun 2019 in cs.LG, cs.AI, cs.MA, q-bio.NC, and stat.ML

Abstract: Drawing an inspiration from behavioral studies of human decision making, we propose here a general parametric framework for a reinforcement learning problem, which extends the standard Q-learning approach to incorporate a two-stream framework of reward processing with biases biologically associated with several neurological and psychiatric conditions, including Parkinson's and Alzheimer's diseases, attention-deficit/hyperactivity disorder (ADHD), addiction, and chronic pain. For AI community, the development of agents that react differently to different types of rewards can enable us to understand a wide spectrum of multi-agent interactions in complex real-world socioeconomic systems. Moreover, from the behavioral modeling perspective, our parametric framework can be viewed as a first step towards a unifying computational model capturing reward processing abnormalities across multiple mental conditions and user preferences in long-term recommendation systems.

Citations (22)

Summary

We haven't generated a summary for this paper yet.