Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

TensorNetwork on TensorFlow: Entanglement Renormalization for quantum critical lattice models (1906.12030v1)

Published 28 Jun 2019 in physics.comp-ph

Abstract: We use TensorNetwork [C. Roberts et al., arXiv: 1905.01330], a recently developed API for performing tensor network contractions using accelerated backends such as TensorFlow, to implement an optimization algorithm for the Multi-scale Entanglement Renormalization Ansatz (MERA). We use the MERA to approximate the ground state wave function of the infinite, one-dimensional transverse field Ising model at criticality, and extract conformal data from the optimized ansatz. Comparing run times of the optimization on CPUs vs. GPU, we report a very significant speed-up, up to a factor of 200, of the optimization algorithm when run on a GPU.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.