Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Gradient projection and conditional gradient methods for constrained nonconvex minimization (1906.11580v1)

Published 27 Jun 2019 in math.OC

Abstract: Minimization of a smooth function on a sphere or, more generally, on a smooth manifold, is the simplest non-convex optimization problem. It has a lot of applications. Our goal is to propose a version of the gradient projection algorithm for its solution and to obtain results that guarantee convergence of the algorithm under some minimal natural assumptions. We use the Lezanski-Polyak-Lojasiewicz condition on a manifold to prove the global linear convergence of the algorithm. Another method well fitted for the problem is the conditional gradient (Frank-Wolfe) algorithm. We examine some conditions which guarantee global convergence of full-step version of the method with linear rate.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.