Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Re-annotation of cough events in the AMI corpus (1906.11509v1)

Published 27 Jun 2019 in eess.AS and eess.SP

Abstract: Cough sounds act as an important indicator of an individual's physical health, often used by medical professionals in diagnosing a patient's ailments. In recent years progress has been made in the area of automatically detecting cough events and, in certain cases, automatically identifying the ailment associated with a particular cough sound. Ethical and sensitivity issues associated with audio recordings of coughs makes it more difficult for this data to be made publicly available. However, without the public availability of a reliable database of cough sounds, developments in the area of audio event detection are likely to be hampered. The purpose of this paper is to spread awareness of a database containing a large amount of naturally occurring cough sounds that can be used for the implementation, evaluation, and comparison of new machine learning algorithms that allow for audio event detection associated with cough sounds. Using a purpose built GUI designed in MATLAB, the re-annotation procedure followed a reusable methodology that allowed for quick and efficient importing and marking of audio signals, resulting in a re-annotated version of the Augmented Multi-party Interaction (AMI) corpus' cough location annotations, with 1369 individual cough events. All cough annotations and the re-annotation tool are made available for download and public use.

Citations (2)

Summary

We haven't generated a summary for this paper yet.