Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Keep soft robots soft -- a data-driven based trade-off between feed-forward and feedback control (1906.10489v1)

Published 25 Jun 2019 in eess.SY, cs.RO, and cs.SY

Abstract: Tracking control for soft robots is challenging due to uncertainties in the system model and environment. Using high feedback gains to overcome this issue results in an increasing stiffness that clearly destroys the inherent safety property of soft robots. However, accurate models for feed-forward control are often difficult to obtain. In this article, we employ Gaussian Process regression to obtain a data-driven model that is used for the feed-forward compensation of unknown dynamics. The model fidelity is used to adapt the feed-forward and feedback part allowing low feedback gains in regions of high model confidence.

Citations (3)

Summary

We haven't generated a summary for this paper yet.