Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stable Gaussian Process based Tracking Control of Euler-Lagrange Systems (1806.07190v2)

Published 19 Jun 2018 in cs.LG, cs.SY, and stat.ML

Abstract: Perfect tracking control for real-world Euler-Lagrange systems is challenging due to uncertainties in the system model and external disturbances. The magnitude of the tracking error can be reduced either by increasing the feedback gains or improving the model of the system. The latter is clearly preferable as it allows to maintain good tracking performance at low feedback gains. However, accurate models are often difficult to obtain. In this article, we address the problem of stable high-performance tracking control for unknown Euler-Lagrange systems. In particular, we employ Gaussian Process regression to obtain a data-driven model that is used for the feed-forward compensation of unknown dynamics of the system. The model fidelity is used to adapt the feedback gains allowing low feedback gains in state space regions of high model confidence. The proposed control law guarantees a globally bounded tracking error with a specific probability. Simulation studies demonstrate the superiority over state of the art tracking control approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Thomas Beckers (26 papers)
  2. Sandra Hirche (118 papers)
  3. Dana Kulić (38 papers)
Citations (112)

Summary

We haven't generated a summary for this paper yet.