Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Renormalisation of pair correlations and their Fourier transforms for primitive block substitutions (1906.10484v2)

Published 25 Jun 2019 in math.DS

Abstract: For point sets and tilings that can be constructed with the projection method, one has a good understanding of the correlation structure, and also of the corresponding spectra, both in the dynamical and in the diffraction sense. For systems defined by substitution or inflation rules, the situation is less favourable, in particular beyond the much-studied class of Pisot substitutions. In this contribution, the geometric inflation rule is employed to access the pair correlation measures of self-similar and self-affine inflation tilings and their Fourier transforms by means of exact renormalisation relations. In particular, we look into sufficient criteria for the absence of absolutely continuous spectral contributions, and illustrate this with examples from the class of block substitutions. We also discuss the Frank-Robinson tiling, as a planar example with infinite local complexity and singular continuous spectrum.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube