Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Non-Paying to Premium: Predicting User Conversion in Video Games with Ensemble Learning (1906.10320v2)

Published 25 Jun 2019 in stat.ML, cs.LG, and stat.AP

Abstract: Retaining premium players is key to the success of free-to-play games, but most of them do not start purchasing right after joining the game. By exploiting the exceptionally rich datasets recorded by modern video games--which provide information on the individual behavior of each and every player--survival analysis techniques can be used to predict what players are more likely to become paying (or even premium) users and when, both in terms of time and game level, the conversion will take place. Here we show that a traditional semi-parametric model (Cox regression), a random survival forest (RSF) technique and a method based on conditional inference survival ensembles all yield very promising results. However, the last approach has the advantage of being able to correct the inherent bias in RSF models by dividing the procedure into two steps: first selecting the best predictor to perform the splitting and then the best split point for that covariate. The proposed conditional inference survival ensembles method could be readily used in operational environments for early identification of premium players and the parts of the game that may prompt them to become paying users. Such knowledge would allow developers to induce their conversion and, more generally, to better understand the needs of their players and provide them with a personalized experience, thereby increasing their engagement and paving the way to higher monetization.

Citations (9)

Summary

We haven't generated a summary for this paper yet.