Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Games and Big Data: A Scalable Multi-Dimensional Churn Prediction Model (1710.02262v1)

Published 6 Oct 2017 in stat.ML

Abstract: The emergence of mobile games has caused a paradigm shift in the video-game industry. Game developers now have at their disposal a plethora of information on their players, and thus can take advantage of reliable models that can accurately predict player behavior and scale to huge datasets. Churn prediction, a challenge common to a variety of sectors, is particularly relevant for the mobile game industry, as player retention is crucial for the successful monetization of a game. In this article, we present an approach to predicting game abandon based on survival ensembles. Our method provides accurate predictions on both the level at which each player will leave the game and their accumulated playtime until that moment. Further, it is robust to different data distributions and applicable to a wide range of response variables, while also allowing for efficient parallelization of the algorithm. This makes our model well suited to perform real-time analyses of churners, even for games with millions of daily active users.

Citations (49)

Summary

We haven't generated a summary for this paper yet.