Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Severe Traffic Accidents With Spatial And Temporal Features (1906.10317v1)

Published 25 Jun 2019 in cs.LG and stat.ML

Abstract: We present an approach to estimate the severity of traffic related accidents in aggregated (area-level) and disaggregated (point level) data. Exploring spatial features, we measure complexity of road networks using several area level variables. Also using temporal and other situational features from open data for New York City, we use Gradient Boosting models for inference and measuring feature importance along with Gaussian Processes to model spatial dependencies in the data. The results show significant importance of complexity in aggregated model as well as as other features in prediction which may be helpful in framing policies and targeting interventions for preventing severe traffic related accidents and injuries.

Citations (2)

Summary

We haven't generated a summary for this paper yet.