Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparison Analysis of Tree Based and Ensembled Regression Algorithms for Traffic Accident Severity Prediction (2010.14921v1)

Published 27 Oct 2020 in cs.OH and cs.LG

Abstract: Rapid increase of traffic volume on urban roads over time has changed the traffic scenario globally. It has also increased the ratio of road accidents that can be severe and fatal in the worst case. To improve traffic safety and its management on urban roads, there is a need for prediction of severity level of accidents. Various machine learning models are being used for accident prediction. In this study, tree based ensemble models (Random Forest, AdaBoost, Extra Tree, and Gradient Boosting) and ensemble of two statistical models (Logistic Regression Stochastic Gradient Descent) as voting classifiers are compared for prediction of road accident severity. Significant features that are strongly correlated with the accident severity are identified by Random Forest. Analysis proved Random Forest as the best performing model with highest classification results with 0.974 accuracy, 0.954 precision, 0.930 recall and 0.942 F-score using 20 most significant features as compared to other techniques classification of road accidents severity.

Citations (7)

Summary

We haven't generated a summary for this paper yet.