Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reducing the dilution: An analysis of the information sensitiveness of capsule network with a practical improvement method (1903.10588v3)

Published 25 Mar 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Capsule network has shown various advantages over convolutional neural network (CNN). It keeps more precise spatial information than CNN and uses equivariance instead of invariance during inference and highly potential to be a new effective tool for visual tasks. However, the current capsule networks have incompatible performance with CNN when facing datasets with background and complex target objects and are lacking in universal and efficient regularization method. We analyze a main reason of the incompatible performance as the conflict between information sensitiveness of capsule network and unreasonably higher activation value distribution of capsules in primary capsule layer. Correspondingly, we propose a practical improvement method by restraining the activation value of capsules in primary capsule layer to suppress non-informative capsules and highlight discriminative capsules. In the experiments, the method has achieved better performances on various mainstream datasets. In addition, the proposed improvement methods can be seen as a suitable, simple and efficient regularization method that can be generally used in capsule network.

Citations (5)

Summary

We haven't generated a summary for this paper yet.