Duality invariant self-interactions of abelian p-forms in arbitrary dimensions (1906.07094v3)
Abstract: We analyze non-linear interactions of 2N-form Maxwell fields in a space-time of dimension D=4N. Based on the Pasti-Sorokin-Tonin (PST) method, we derive the general consistency condition for the dynamics to respect both manifest SO(2)-duality invariance and manifest Lorentz invariance. For a generic dimension D=4N, we determine a canonical class of exact solutions of this condition, which represent a generalization of the known non-linear duality invariant Maxwell theories in D=4. The resulting theories are shown to be equivalent to a corresponding class of canonical theories formulated a la Gaillard-Zumino-Gibbons-Rasheed (GZGR), where duality is a symmetry only of the equations of motion. In dimension D=8, via a complete solution of the PST consistency condition, we derive new non-canonical manifestly duality invariant quartic interactions. Correspondingly, we construct new non-trivial quartic interactions also in the GZGR approach, and establish their equivalence with the former. In the presence of charged dyonic p-brane sources, we reveal a basic physical inequivalence of the two approaches. The power of our method resides in its universal character, reducing the construction of non-linear duality invariant Maxwell theories to a purely algebraic problem.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.