Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mask2Lesion: Mask-Constrained Adversarial Skin Lesion Image Synthesis (1906.05845v2)

Published 13 Jun 2019 in eess.IV and cs.CV

Abstract: Skin lesion segmentation is a vital task in skin cancer diagnosis and further treatment. Although deep learning based approaches have significantly improved the segmentation accuracy, these algorithms are still reliant on having a large enough dataset in order to achieve adequate results. Inspired by the immense success of generative adversarial networks (GANs), we propose a GAN-based augmentation of the original dataset in order to improve the segmentation performance. In particular, we use the segmentation masks available in the training dataset to train the Mask2Lesion model, and use the model to generate new lesion images given any arbitrary mask, which are then used to augment the original training dataset. We test Mask2Lesion augmentation on the ISBI ISIC 2017 Skin Lesion Segmentation Challenge dataset and achieve an improvement of 5.17% in the mean Dice score as compared to a model trained with only classical data augmentation techniques.

Citations (40)

Summary

We haven't generated a summary for this paper yet.