Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Improved fragment-based movement with LRFragLib for all-atom Ab initio protein folding (1906.05785v1)

Published 2 Jun 2019 in q-bio.QM and physics.bio-ph

Abstract: Fragment-based assembly has been widely used in Ab initio protein folding simulation which can effectively reduce the conformational space and thus accelerate sampling. The efficiency of fragment-based movement as well as the quality of fragment library determine whether the folding process can lead the free energy landscape to the global minimum and help the protein to reach near-native folded state. We designed an improved fragment-based movement, "fragmove", which substituted multiple backbone dihedral angles in every simulation step. This movement strategy was derived from the fragment library generated by LRFragLib, an effective fragment detection algorithm using logistic regression model. We show in replica exchange Monte Carlo (REMC) simulation that "fragmove", when compared with a set of existing movements in REMC, shows significant improved ability at increasing secondary and tertiary predicted model accuracy by 11.24% and 17.98%, respectively and reaching energy minima decreased by 5.72%. Our results demonstrate that this improved movement is more powerful to guide proteins faster to low energy regions of conformational space and promote folding efficiency and predicted model accuracy.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube