Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Continual Reinforcement Learning deployed in Real-life using Policy Distillation and Sim2Real Transfer (1906.04452v1)

Published 11 Jun 2019 in cs.LG, cs.RO, and stat.ML

Abstract: We focus on the problem of teaching a robot to solve tasks presented sequentially, i.e., in a continual learning scenario. The robot should be able to solve all tasks it has encountered, without forgetting past tasks. We provide preliminary work on applying Reinforcement Learning to such setting, on 2D navigation tasks for a 3 wheel omni-directional robot. Our approach takes advantage of state representation learning and policy distillation. Policies are trained using learned features as input, rather than raw observations, allowing better sample efficiency. Policy distillation is used to combine multiple policies into a single one that solves all encountered tasks.

Citations (43)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.