Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Progressive Cluster Purification for Transductive Few-shot Learning (1906.03847v1)

Published 10 Jun 2019 in cs.CV

Abstract: Few-shot learning aims to learn to generalize a classifier to novel classes with limited labeled data. Transductive inference that utilizes unlabeled test set to deal with low-data problem has been employed for few-shot learning in recent literature. Yet, these methods do not explicitly exploit the manifold structures of semantic clusters, which is inefficient for transductive inference. In this paper, we propose a novel Progressive Cluster Purification (PCP) method for transductive few-shot learning. The PCP can progressively purify the cluster by exploring the semantic interdependency in the individual cluster space. Specifically, the PCP consists of two-level operations: inter-class classification and intra-class transduction. The inter-class classification partitions all the test samples into several clusters by comparing the test samples with the prototypes. The intra-class transduction effectively explores trustworthy test samples for each cluster by modeling data relations within a cluster as well as among different clusters. Then, it refines the prototypes to better represent the real distribution of semantic clusters. The refined prototypes are used to remeasure all the test instances and purify each cluster. Furthermore, the inter-class classification and the intra-class transduction are extremely flexible to be repeated several times to progressively purify the clusters. Experimental results are provided on two datasets: miniImageNet dataset and tieredImageNet dataset. The comparison results demonstrate the effectiveness of our approach and show that our approach outperforms the state-of-the-art methods on both datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Chenyang Si (36 papers)
  2. Wentao Chen (39 papers)
  3. Wei Wang (1793 papers)
  4. Liang Wang (512 papers)
  5. Tieniu Tan (119 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.