Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Rational homotopy equivalences and singular chains (1906.03655v2)

Published 9 Jun 2019 in math.AT

Abstract: Bousfield and Kan's $\mathbb{Q}$-completion and fiberwise $\mathbb{Q}$-completion of spaces lead to two different approaches to the rational homotopy theory of non-simply connected spaces. In the first approach, a map is a weak equivalence if it induces an isomorphism on rational homology. In the second, a map of connected and pointed spaces is a weak equivalence if it induces an isomorphism between fundamental groups and higher rationalized homotopy groups; we call these maps $\pi_1$-rational homotopy equivalences. In this paper, we compare these two notions and show that $\pi_1$-rational homotopy equivalences correspond to maps that induce $\Omega$-quasi-isomorphisms on the rational singular chains, i.e. maps that induce a quasi-isomorphism after applying the cobar functor to the dg coassociative coalgebra of rational singular chains. This implies that both notions of rational homotopy equivalence can be deduced from the rational singular chains by using different algebraic notions of weak equivalences: quasi-isomorphism and $\Omega$-quasi-isomorphisms. We further show that, in the second approach, there are no dg coalgebra models of the chains that are both strictly cocommutative and coassociative.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.