Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variational Inference with Numerical Derivatives: variance reduction through coupling (1906.06914v1)

Published 17 Jun 2019 in stat.CO and stat.ML

Abstract: The Black Box Variational Inference (Ranganath et al. (2014)) algorithm provides a universal method for Variational Inference, but taking advantage of special properties of the approximation family or of the target can improve the convergence speed significantly. For example, if the approximation family is a transformation family, such as a Gaussian, then switching to the reparameterization gradient (Kingma and Welling (2014)) often yields a major reduction in gradient variance. Ultimately, reducing the variance can reduce the computational cost and yield better approximations. We present a new method to extend the reparameterization trick to more general exponential families including the Wishart, Gamma, and Student distributions. Variational Inference with Numerical Derivatives (VIND) approximates the gradient with numerical derivatives and reduces its variance using a tight coupling of the approximation family. The resulting algorithm is simple to implement and can profit from widely known couplings. Our experiments confirm that VIND effectively decreases the gradient variance and therefore improves the posterior approximation in relevant cases. It thus provides an efficient yet simple Variational Inference method for computing non-Gaussian approximations.

Summary

We haven't generated a summary for this paper yet.