Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimation and Tracking of a Moving Target by Unmanned Aerial Vehicles (1906.02573v1)

Published 6 Jun 2019 in cs.SY and eess.SY

Abstract: An image-based control strategy along with estimation of target motion is developed to track dynamic targets without motion constraints. To the best of our knowledge, this is the first work that utilizes a bounding box as image features for tracking control and estimation of dynamic target without motion constraint. The features generated from a You-Only-Look-Once (YOLO) deep neural network can relax the assumption of continuous availability of the feature points in most literature and minimize the gap for applications. The challenges are that the motion pattern of the target is unknown and modeling its dynamics is infeasible. To resolve these issues, the dynamics of the target is modeled by a constant-velocity model and is employed as a process model in the unscented Kalman filter (UKF), but process noise is uncertain and sensitive to system instability. To ensure convergence of the estimate error, the noise covariance matrix is estimated according to history data within a moving window. The estimated motion from the UKF is implemented as a feedforward term in the developed controller, so that tracking performance is enhanced. Simulations are demonstrated to verify the efficacy of the developed estimator and controller.

Citations (10)

Summary

We haven't generated a summary for this paper yet.