Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rapidly-Exploring Quotient-Space Trees: Motion Planning using Sequential Simplifications (1906.01350v2)

Published 4 Jun 2019 in cs.RO and cs.AI

Abstract: Motion planning problems can be simplified by admissible projections of the configuration space to sequences of lower-dimensional quotient-spaces, called sequential simplifications. To exploit sequential simplifications, we present the Quotient-space Rapidly-exploring Random Trees (QRRT) algorithm. QRRT takes as input a start and a goal configuration, and a sequence of quotient-spaces. The algorithm grows trees on the quotient-spaces both sequentially and simultaneously to guarantee a dense coverage. QRRT is shown to be (1) probabilistically complete, and (2) can reduce the runtime by at least one order of magnitude. However, we show in experiments that the runtime varies substantially between different quotient-space sequences. To find out why, we perform an additional experiment, showing that the more narrow an environment, the more a quotient-space sequence can reduce runtime.

Citations (18)

Summary

We haven't generated a summary for this paper yet.