Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Metric Learning for Individual Fairness (1906.00250v2)

Published 1 Jun 2019 in cs.LG, cs.CY, and stat.ML

Abstract: There has been much discussion recently about how fairness should be measured or enforced in classification. Individual Fairness [Dwork, Hardt, Pitassi, Reingold, Zemel, 2012], which requires that similar individuals be treated similarly, is a highly appealing definition as it gives strong guarantees on treatment of individuals. Unfortunately, the need for a task-specific similarity metric has prevented its use in practice. In this work, we propose a solution to the problem of approximating a metric for Individual Fairness based on human judgments. Our model assumes that we have access to a human fairness arbiter, who can answer a limited set of queries concerning similarity of individuals for a particular task, is free of explicit biases and possesses sufficient domain knowledge to evaluate similarity. Our contributions include definitions for metric approximation relevant for Individual Fairness, constructions for approximations from a limited number of realistic queries to the arbiter on a sample of individuals, and learning procedures to construct hypotheses for metric approximations which generalize to unseen samples under certain assumptions of learnability of distance threshold functions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Christina Ilvento (7 papers)
Citations (91)

Summary

We haven't generated a summary for this paper yet.