Papers
Topics
Authors
Recent
2000 character limit reached

Fairness Through Computationally-Bounded Awareness

Published 8 Mar 2018 in cs.LG, cs.CC, and cs.DS | (1803.03239v2)

Abstract: We study the problem of fair classification within the versatile framework of Dwork et al. [ITCS '12], which assumes the existence of a metric that measures similarity between pairs of individuals. Unlike earlier work, we do not assume that the entire metric is known to the learning algorithm; instead, the learner can query this arbitrary metric a bounded number of times. We propose a new notion of fairness called metric multifairness and show how to achieve this notion in our setting. Metric multifairness is parameterized by a similarity metric $d$ on pairs of individuals to classify and a rich collection ${\cal C}$ of (possibly overlapping) "comparison sets" over pairs of individuals. At a high level, metric multifairness guarantees that similar subpopulations are treated similarly, as long as these subpopulations are identified within the class ${\cal C}$.

Citations (139)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.