Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Effective Multi-Resolution Hierarchical Granular Representation based Classifier using General Fuzzy Min-Max Neural Network (1905.12170v3)

Published 29 May 2019 in cs.LG and stat.ML

Abstract: Motivated by the practical demands for simplification of data towards being consistent with human thinking and problem solving as well as tolerance of uncertainty, information granules are becoming important entities in data processing at different levels of data abstraction. This paper proposes a method to construct classifiers from multi-resolution hierarchical granular representations (MRHGRC) using hyperbox fuzzy sets. The proposed approach forms a series of granular inferences hierarchically through many levels of abstraction. An attractive characteristic of our classifier is that it can maintain relatively high accuracy at a low degree of granularity based on reusing the knowledge learned from lower levels of abstraction. In addition, our approach can reduce the data size significantly as well as handling the uncertainty and incompleteness associated with data in real-world applications. The construction process of the classifier consists of two phases. The first phase is to formulate the model at the greatest level of granularity, while the later stage aims to reduce the complexity of the constructed model and deduce it from data at higher abstraction levels. Experimental outcomes conducted comprehensively on both synthetic and real datasets indicated the efficiency of our method in terms of training time and predictive performance in comparison to other types of fuzzy min-max neural networks and common machine learning algorithms.

Citations (15)

Summary

We haven't generated a summary for this paper yet.